SOME REGULARITIES OF THE TURBULENT PRESSURE
FIELD IN THE BOUNDARY LAYER ON A FLAT PLATE

A. V., Smol'yakov

In this paper we present the results of calculations of the space correlations of the random
pressure field which acts on the surface of a flat plate out of a fully developed turbulent
boundary layer. Calculations are performed on the basis of available experimental data on
the cross-spectral density of the turbulent pressure fluctuations. It is found that the space-
time correlations have an explicitly expressed form similarity. This is used as a basis for
deriving a simple approximate relation between the modulus of the normalized cross-spec-
tral density, the energy spectrum, and the maxima of the space-time correlation coefficient.
The results of elementary calculations performed on the basis of the obtained relation are
shown to be almost identical with those obtained on a digital computer from exact formulas.

1. The solution of numerous problems requiresinformation on various statistical characteristics of
the turbulent boundary layer, which include the characteristics of the turbulent pressure field. Among such
problems are the aerodynamic noise generated by the boundary layer during the motion of flight vehicles|[1,
2], the buildup of vibrations in elastic structures situated in a flow [3, 4], the generation of wind-waves at
the free surface of a fluid [5], and many others. Furthermore, knowledge of the statistical characteristics
of the pressure field is required for better understanding of the structure of the turbulent boundary layer.
The subject of theoretical and experimental investigations in incompressible fluid boundary layers is fre-
quently a complex function, namely the cross-spectral density of pressure fluctuations at the plate surface:
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P, 0)= Er S R (L, t)exp(— iwt)dr

Q0

(1.1)

where R(Z, 7) = <p(x,t) px+ &, t + 7)> is the space-time correlation of fluctuations of pressure p in a
field stationary with respect to time t and uniform with respect to spacex; & and T are the spatial (in the
plane of the plate) and the time interval between the observation points, respectively; and w is the angular
frequency of the pulsations, The fact that among all the statistical characteristics the cross-spectral den-
sity is particularly appealing to investigators may be attributed to the possibility of it being measured with
minimum distortion [6].

However, in the solution of actual problems associated with turbulent pressures, it is frequently more
convenient to possess information on the correlations R{ 7) rather than on the cross-spectral density. In
principle, it is always possible to calculate R(Z,T) from the known function P(¢, «) with the aid of Fourier
transforms inverse to (1.1),

R(E, 0=

S P (g, o)exp (iot)do (1.2)

Such calculations, however, are extremely cumbersome, and the use of a computer is unavoidable whenever
R(Z,7) has to be determined for a wide range of & and 7.
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But there exists another approach, by means of
which fairly simple approximate expressions can be ob-

rig.o tained, whose accuracy is nevertheless quite satisfactory,
In the following, it will be shown that this is possible due -
\\ to the existence of a specific relationship between the en-
ergy spectrum and the modulus of the cross-spectral den-
, \ sity of turbulent pressures.
H N\
N 2. In the following we use an expression for the
z\ 5 4 cross-spectral density in a form proposed by Corcos [7]:
B e P, o ® M ew
, P B p : P%y@; AKEU())B(U )exp<~«i70> (2.1)
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Fig. 1. Coefficient of longitudinal spatial where P(0, w) is the spectral energy density of the turbu-
correlations; curves 1, 2, 3, 4, and 5, cor- lent pressure pulsations (or the cross-spectral density for
respond to exact computer calculations a zero spatial interval); £ and n are the components of
from formula (1.2) for £ = 0.10, 30, 60,and vector &that are parallel and perpendicular to the direc-
£° =0, respectively; the open circles cor- tion of the averaged flow velocity in the boundary layer,
respond to approximate calculations from respectively; A and B are the moduli of the normalized
formula (3,4) and spectrum (2.3); curve 6 longitudinal and transverse cross-spectral densities, re-
corresponds to approximate calculations spectively; and Uy is the phase velocity of the correspond-
from formula (4.2) and spectrum (4.1). ing frequency component of the pressure field.

Numerous measurements performed by various in-
’W L) vestigators [8-‘10] justify the use of representati.on {2.1),
at least for a wide range of § and w. The moduli A and B
measured are satisfactorily approximated by the expo-
\ nential functions

FR LT N AN

and although the values of ¢, 8, and U, differ somewhat in
/ the various tests, the data spread is moderate and the data
may be assumed to concentrate in the intervals o = 0.08to
0.10, 8 = 0.55 to 0.60, and U, = (0.7-0.8) U,, where Uy is
a 7 ] E; ] the averaged flow velocity at the outer edge of the bound-
L-%) ary layer.
Fig, 2, Similarity of the
space-time correlations;
curve 1 corresponds toexact
computer calculations for the
range £° = 0-120; curve 2
corresponds to approximate
calculations from formula
(4.3).

Extremely thorough measurements of the energy
spectrum P (0, w) of the pressure pulsations on a flatplate
have been performed, in particular, by Willmarth and
Wooldridge [11] and by Willmarth and Roos [ 8]. The data
on the energy spectrum obtained in [ 8] are generally con-
sidered to be highly reliable, The analytical expression

P, QU 1.27 o 0" (2.3)

L@ = —Zwse T 1 4-exp (1.237Q055) = 7

provides a good approximation to the data [ 8].

Here 6% is the boundary layer displacement thickness, and < p%> is the dispersion of turbulent pres-
sure pulsations at the plate surface.

The energy spectrum (2.3) and the cross-spectral density (2.1) for o = 0.088 were used to calculate the
longitudinal (n = 0) space-time correlations from formula (1.2) with the aid of a "Promin" digital computer.
Automatic sampling (for each value of £ and 7) was programmed for an integration step for whichtheerror
of the trapezoidal rule did not exceed 0.5%. The upper and lower bounds of integration were selected from
the condition of achieving machine zero for the cross-spectral density. Some of the computed results are
shown in Fig. 1. It may be seen from the curves that the peak values of the correlation coefficients
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Fig. 3. Curves 1, 2, 3, 4,
and 5 correspond to
L = 1.0, 0.63, 0.40, 0.25,
0.10; curve 6 corresponds
to the exponential spectrum
(4.1).
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Fig. 4. Curves 1, 2, 3, and
4 correspond to the left-
hand side of (3.4) for

L = 0.63, 0.40, 0.25, and
0.10; curves 11, 2', 3', and
4! correspond to
exp+(—0.088 2] £°)) for
£°=2.5, 9.0, 17.5, and
56.0.

1 / EU-
LE) = RlEv=15)  E=%p; (2.4

first increase rapidly and then diminish slowly with increasing distance £°
between the observation points, the correlation functions growing more and
more shallow. All this is in good agreement with direct correlation mea-
surements [11]. The fact that the areas below the curves r (¢, ) = <p*>~IR
(¢ ,7) are not alike is not surprising, since it is a direct consequence of the
representation of the cross-spectral density in the form of (2.1) [7]. Much
more unexpected is the similarity of the shape of the space-time correla-
tions for arbitrary values of £° and § = TU;/6*. In spite of it being clearly
seen in Fig. 2, this fact could not be predicted a priori, The reason for this
surprising result will be explained below, but its exceptional usefulness
should be noted at this point. It consists in the fact that in order to plot the
entire family of R(¢, 7) curves, there is apparently no need to introduce
Fourier transforms (1.2) for all the possible combinations of { and 7. If is
sufficient to set T = & /U,, thereby defining the shape of the curve L(£°) for
the peaks of the family <p? >~IR (£, T); on the other hand, any of the curves
of this family can be readily obtained from the autocorrelation*

R0, 1)=\ P(0, w)exp (for) do (2.5)

OQ/‘AS

by affine transformation of the coordinates with the aid of the scale L(E)
RE vy=LRIO,L(x— &/ Uyl (2.6)

3. Formula of the Speciral Relations Similarity (2.6) of the correla-
tions does not derive from anywhere, and in order to understand why it is
fulfilled, it is advisable to examine the inverse problem: to assume thatthis
similarity exists and to attempt to derive from here possible consequences.

On the basis of (1.1}, (2.1), and (2.6), we may write

P (0, ©) Ao | Us) exp (— ik [ Ug) =

:2—1:{ S LRI0, L(v—&/ Uyl exp (—iwt)dr (3.1)

After the change of variables ¢= L, ¥ = w/L, the right-hand side of (3.1) takes the form

27

S R(0, & — L%/ Ug)exp (—iy9) dd (3.2)

Integral (3.2) may be treated as the spectrum of a function with a time lag A¢ = L¢ /U,. As we know
[12], the spectrum P, (x) of the lagging function R (# —Ad ) is related to the spectrum P(y) of function

R{#) by the relation

Pa(y)=P(y)exp(— ixAd) (3.3)

By comparing (3.1), (3.2), and (3.3), and returning to the initial variables, we arrive at the relation

P, w/L) :A<mg> (3.4)

F (0, ©) T,

which may be termed the formula of spectral relations. It shows that the modulus of the normalized longi-
tudinal cross-spectral density is equal to the ratio of the energy spectrum transposed L-! times in frequen-
cy with respect to the real energy spectrum.

*The value of the lower bound of the integral (2.5) takes into account that the experimentally determined
spectrum P (0, «) is "unilateral”, i.e., not all the energy is assumed to be distributed solely in the region

w =0,
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The structure of the relationship obtained, however, requires that for fixed £, Uy, and L, the right-
and left-hand sides of (3.4) possess the same frequency dependence. It is obvious that for arbitrary func-
tions P(0, w) and A (w¢ /Uy, this requirement need not always be fulfilled. If, for example, modulus A is
given in the form of the exponential curve (2.2), relation (3.4) can be rigorously satisfied only if the energy
spectrum has the analytical form

P (0, ®) ~ exp (— yw), y = const (3.5)

In our case, on the basis of experimental data, we adopted relations (2.3) and (2.2), for which formula
(3.4) cannot be absolutely correct. As a consequence, with respect to the data shown in Fig. 2, it may be
definitely stated that in spite of the convincing matching of the curves R (£, 7), calculated on a computer,
their similarity was not strict. Nevertheless, it is not difficult to see (Fig. 3) that spectra (2,3) and (3.5)
differ only slightly, This is exactly the reason why the computed correlation functions are well described
by the similarity relation (2.6). Thus, the surprising result revealed by the calculations has now found an
explanation.,

It may well be that the experimentally observed similarity of the functional frequency dependences of
the energy spectrum and the modulus of the normalized cross-spectral density are not a mere coincidence
but rather are a phenomenon caused by some intrinsic regularities of the fully developed turbulent bound-
ary layer. It is not possible, however, to prove or refute theoretically the compulsory nature of this simi-
larity, and for the time being it should be accepted as an experimental fact.

The significant deviation of the experimentally observed spectrum (2.3) from the exponential form
(3.5) gives reason to expect that the formula of spectral relations will be satisfactorily accurate for the
wall pressure field beneath the turbulent boundary layer on a flat plate. A procedure for graphically solv-
ing equation (3.4) is shown in Figs. 3 and 4 for L = 0.63, 0.40, 0.25, and 0.10. It may be seen that for prop-
erly selected values of £°, the right- and left-hand sides of (3.4) have approximately the same frequency
dependence. In Fig, 1, the values of function L(£°) determined in this way are compared with its values ob-
tained on a computer from exact formulas. It may be seen that the accuracy of (3.4) is completely satis-
factory.

4, Other Approximate Relations, If the energy spectrum is assumed to have the form (3.5), the nor-
malization condition

P (0, 0)do = p®

OEA8

together with the requirement of the best approximation of spectrum (2,3) make it possible to determine the
constants, and to write

PO, QU ‘
~——<(Pg> 5)* - = 0.548 exp (— 0.5480) (4.1)
By substituting (4.1) into (3.4) for

we obtain a simple analytical expression for the peak values of the coefficient of the longitudinal space-
time correlation

N
L) = (1 + 3'2_)25') (4.2)

In Fig. 1, it is shown that relation (4.2) is very close to the exact relation, if, as before, & = 0.088.
It is not difficult to obtain an expression for the longitudinal space-time correlations

\ o]
" 0.5485*

<;+2>R(s_,r)= 7 SeXP[—9‘0'548+°"€°')—i”(%”ﬂd“’

0.548 (0.548 -+ [ £° )
OBl EFO—(T ) (4.3)
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whence the autocorrelation coefficient is

—<—;—2>— RO, 1= [1 + (—Oj%gﬂ’l (4.4)

It can be readily seen that (4.3) can be obtained from (4.4) by affine transformation of (2.6) with the
aid scale (4,2). In Fig. 2, the exact values of the space-time correlations are compared with the approxi-
mate values from (4.3). The comparison reveals a small difference between the exact and approximate
results.

The functions R (¢ ,T) were calculated on a digital computer for the vector intervals &{{,n) at = 0.
However, by satisfying the accuracy of the analytical relations based on the use of the energy spectrum
(4.1), cumbersome computations can he avoided. On the basis of(2.1) and (2.2), relation (4.3) can be read-
ily generalized to the form

" | OBA8(0.548 fa | E [+ BIN°]) (4.5)
T REN D= GEB T e TR LG =]

(° = U,/ 8*Uy)

This makes it possible to characterize in correlative terms the statistical properties of the random
turbulent pressure field on a flat plate. The accuracy of (4.5) and (4.3) is alike, since both are derived un-~
der the same assumptions.

The author is indebted to Yu. G. Blyudze for useful discussions of the results of this paper.
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